Analysis of rectangular beams with tension reinforcement

- Generally, in the analysis problem the following information are known:
- 1. Beam dimensions and reinforcement (b,h,d and As).
- **2.** Materials strength (fy and Fc`).

And following information are required

- Check the adequacy of the section according to ACI requirement.
- Compute design moment ØMn.
- Compute the maximum live or dead load.

Procedure Analysis for Rectangular Beams with tension Reinforcement (Singly reinforcement)

1. Calculate
$$\rho = \frac{As}{bd}$$

Where As = n × $\frac{\pi}{4}$ × D^2

N = number of bars

D = diameter of reinforcement bar

Check if the provided ρ is in agreement with ACI requirements.

$$\rho \leq \rho_{max} = 0.85 \beta_1 \frac{fc}{fy} \frac{\epsilon u}{\epsilon u + 0.004}$$

$$\epsilon_u = 0.003$$

$$As \geq As_{minimum} = \frac{0.25 \sqrt{fc}}{fy} b_w d \geq \frac{1.4}{fy} b_w d$$

2. Calculate Ø

$$a = \frac{Asfy}{0.85fc`b}$$
$$c = \frac{a}{\beta 1}$$

• according to ACI code β1 can be calculated from table below

Table 22.2.2.4.3—Values of β_1 for equivalent rectangular concrete stress distribution

fc', MPa	β_1	
$17 \le f_c' \le 28$	0.85	(a)
28 < f'_c < 55	$0.85 - \frac{0.05(f_c' - 28)}{7}$	(b)
<i>f</i> _c ′ ≥ 55	0.65	(c)

$$\in t = \frac{dt - c}{c} \in u$$

where: ∈u=0.003

- If $\in t \ge 0.005$, then $\emptyset = 0.9$
- If ∈t<0.005 then

3. Calculate ØMn

ØMn can be calculated from:

$$\emptyset$$
Mn= \emptyset Asfy(d- $\frac{a}{2}$)

Or

 \emptyset Mn= \emptyset 0.85fc`ab(d- $\frac{a}{2}$)

Or

$$\emptyset$$
Mn= $\emptyset \rho f_y$ **bd**² $(1-0.59 \frac{\rho f y}{f c})$

4. Find Mu and compare it with φMn

If φMn≥Mu the section is Ok

If φMn<Mu the section is not Ok

Concrete Cover

To provide the steel with adequate concrete protection against corrosion, the designer must maintain a certain minimum thickness of concrete to cover outside of the outermost steel.

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, mm
Cast against and permanently in contact with ground	All	All	75
Exposed to weather or in contact with ground	All	No. 19 through No. 57 bars	50
		No. 16 bar, MW200 or MD200 wire, and smaller	40
Not exposed to weather or in contact with ground	Slabs, joists, and walls	No. 43 and No. 57 bars	40
		No. 36 bar and smaller	20
	Beams, columns, pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	40

• As a general case, requirement for beams (that not exposed to weather)=40 mm

Example 1: Check the adequacy of the beam shown below according to ACI requirement, use fc`=25 Mpa, fy=400 Mpa, neglect the self-weight

Solution:

As = n ×
$$\frac{\pi}{4}$$
 × D² = 3× $\frac{\pi}{4}$ × 20² = 942 mm²

$$\rho = \frac{As}{bd} = \frac{942}{300*550} = 5.71 \times 10^{-3}$$

$$\rho_{max} = 0.85 \beta_1 \frac{fc'}{fy} \frac{\epsilon u}{\epsilon u + 0.004} = 0.85 \times 0.85 \times \frac{25}{400} \times \frac{0.003}{0.003 + 0.004} = 19.4 \times 10^{-3}$$

$$\rho < \rho_{max} \text{ O.k}$$
As $\frac{1.4}{fy} b_w \times d = \frac{1.4}{400} \times 300 \times 550 = 525 \text{ mm}^2$
As > As $\frac{1.4}{500} b_w = \frac{942 \times 400}{0.85 \times 25 \times 300} = 59.1 \text{ mm}$

$$c = \frac{a}{\beta 1} = \frac{59.1}{0.85} = 69.5 \text{ mm}$$

$$\epsilon t = \frac{dt - c}{c} \epsilon u = \frac{550 - 69.5}{69.5} \times 0.003 = 20.7 \times 10^{-3}$$

$$\epsilon t > 0.005$$

$$\phi = 0.9$$

$$\phi \text{Mn} = \phi \text{As} \times \text{fy} (d - \frac{a}{2}) = 0.9 \times 942 \times 400 \times (550 - \frac{59.1}{2}) \times 10^{-6} = 176 \text{ kN.m}$$

$$\text{Mu} = \frac{Pu \times L}{4} = \frac{100 \times 5}{4} = 125 \text{ kN.m}$$

$$\phi \text{Mn} > \text{Mu} \text{ the section is O.k}$$

Example 2: Check the adequacy for the beam below according to ACI requirement, if the beam is subjected to uniform dead load (3) kN/m (without self-weight) and uniform live load (2) kN/m, use fc'=28 Mpa and fy=420 Mpa

537.5 mm

Solution:

As = n ×
$$\frac{\pi}{4}$$
 × D^2 = 3× $\frac{\pi}{4}$ × 25² = 1472.6 mm²

d=h-cover-stirrups-
$$\frac{\varphi bar}{2}$$
 = 600-40-10- $\frac{25}{2}$ = 537.5 mm

$$\rho = \frac{As}{bd} = \frac{1472.6}{400 \times 537.5} = 6.85 \times 10^{-3}$$

$$\rho_{max} = 0.85 \beta_1 \frac{fc}{fy} = \frac{\epsilon u}{\epsilon u + 0.004} = 0.85 \times 0.85 \times \frac{28}{420} \times \frac{0.003}{0.003 + 0.004} = 0.0206$$

$$\rho < \rho_{max} O.k$$

As
$$_{\text{minimum}} = \frac{1.4}{fy} b_{\text{w}} \times d = \frac{1.4}{420} \times 400 \times 537.5 = 716.67 \text{ mm}^2$$

$$As > As_{minimum}$$

As > As minimum

$$a = \frac{Asfy}{0.85fc'b} = \frac{1472.6 \times 420}{0.85 \times 28 \times 400} = 64.96 \text{ mm}$$

$$c = \frac{a}{\beta_1} = \frac{64.96}{0.85} = 76.43 \text{ mm}$$

$$\in t = \frac{dt - c}{c} \in u = \frac{537.5 - 76.43}{76.43} \times 0.003 = 0.018$$

$$\epsilon t = 0.018 > 0.005$$

$$\emptyset = 0.9$$

$$\emptyset$$
Mn= \emptyset Asfy(d- $\frac{a}{2}$) = 0.9×1472.6 ×420× (537.5 - $\frac{64.96}{2}$) ×10⁻⁶ = 281.1 kN.m

Find Mu

$$Mu = \frac{Wu \times \ell^2}{8}$$

$$Wu = 1.2W_D + 1.6W_L$$

$$W_{D \text{ self-weight}} = \gamma \times b \times d=24 \times 0.4 \times 0.6 =5.76 \text{ kN/m}$$

WD total=
$$5.76 + 3 = 8.76 \text{ kN/m}$$

$$Wu=1.2 \times 8.76 + 1.6 \times 2=13.712 \text{ kN/m}$$

$$Mu = \frac{Wu \times \ell^2}{8} = \frac{13.712 \times 5^2}{8} = 42.85 \text{ kN.m}$$
 ØMn> Mu section is O.K.

600mm

400mm--l

Example: check the adequacy of the cantilever shown below; the cantilever is subjected to uniform dead load (3) kN/m (include self-weight) and uniform live load (4) kN/m, fc`=28 Mpa and fy=420 Mpa

Solution:

As =
$$n \times \frac{\pi}{4} \times D^2 = 3 \times \frac{\pi}{4} \times 20^2 = 942 \text{ mm}^2$$

 $d=600 - 40 - 10 - \frac{20}{2} = 540 \text{ mm}$
 $\rho = \frac{As}{bd} = \frac{942}{250 \times 540} = 6.98 \times 10^{-3}$
 $\rho_{max} = 0.85 \beta_1 \frac{fc}{fy} \frac{\epsilon u}{\epsilon u + 0.004} = 0.85 \times 0.85 \times \frac{28}{420} \times \frac{0.003}{0.003 + 0.004} = 0.0206$
 $\rho < \rho_{max} O.k$
As_{minimum} = $\frac{1.4}{fy} b_w \times d = \frac{1.4}{420} \times 250 \times 540 = 450 \text{ mm}^2$

$$As > As_{minimum} o.k$$

As > As_{minimum} o.k

$$a = \frac{As \times fy}{0.85 fc' \times b} = \frac{942 \times 420}{0.85 \times 28 \times 250} = 66.5 \text{ mm}$$

$$c = \frac{a}{61} = \frac{66.5}{0.85} = 78.23 \text{ mm}$$

$$\in t = \frac{dt - c}{c} \in u = \frac{540 - 78.23}{78.23} \times 0.003 = 0.0177$$

$$\epsilon t > 0.005$$

$$\therefore \emptyset = 0.9$$

$$\emptyset Mn = \emptyset Asf_y(d - \frac{a}{2}) = 0.9 \times 942 \times 420 \times \left(540 - \frac{66.5}{2}\right) \times 10^{-6} = 180.44 \text{ kN.m}$$

Calculate Mu

$$Mu = \frac{Wu \times \ell^2}{2}$$

$$Wu=1.2W_D+1.6W_L=1.2\times3+1.6\times4=10 \text{ kN/m}$$

$$Mu = \frac{Wu \times \ell^2}{2} = \frac{10 \times 4.8^2}{2} = 115.2 \text{ kN.m}$$

øMn> Mu section is O.K. ■

Example: check the adequacy of a simply supported beam shown in figure below when subjected to a factored load of Wu=70 kN/m (including self-weight), use fc = 28 Mpa and fy=420 Mpa

Solution

Solution:
As=
$$n*\frac{\pi}{4}*D^2=5*\frac{\pi}{4}*25^2=2454 \text{ mm}^2$$

 $d=600\text{-}40\text{-}10\text{-}25\text{-}\frac{25}{2}=512 \text{ mm}$
 $\rho = \frac{As}{bd} = \frac{2454}{300*512} = 0.0159$
 $\rho_{max} = 0.85\beta_1 \frac{fc}{fy} \frac{\epsilon u}{\epsilon u + 0.004} = 0.85*0.85*\frac{28}{420}*\frac{0.003}{0.003 + 0.004} = 0.0206$
 $\rho < \rho_{max} \text{ O.k}$
As $\min_{\text{minimum}} = \frac{1.4}{fy} b_w * d = \frac{1.4}{420} *300*512 = 512 \text{ mm}^2$
As > As $\min_{\text{minimum}} 0.k$
 $a = \frac{As*fy}{0.85fc} = \frac{2454*420}{0.85*28*300} = 144 \text{ mm}$
 $c = \frac{a}{\beta 1} = \frac{144}{0.85} = 169.83 \text{ mm}$
 $\epsilon t = \frac{dt-c}{c} \epsilon u = \frac{537.5 - 169.83}{169.83} *0.003 = 6.5*10^{-3} > 0.005$

Then
$$\emptyset = 0.9$$

 $\emptyset Mn = \varphi As * fy(d - \frac{a}{2}) = 0.9 * 2454 * 420 * (512 - \frac{144}{2}) * 10^{-6} = 408 \text{ kN.m}$

$$Mu = \frac{Wu * \ell^2}{8} = \frac{70 * 5^2}{8} = 218.75 \text{ kN.m}$$
 $\varphi Mn > Mu \text{ section is O.K.}$

Example: for the precast beam shown in Figure below, the designer intended to use $4\phi20$,check the adequacy of the beam according to ACI requirement, the beam is subjected to uniform dead load (15) kN/m (with self-weight) and uniform live load (20) kN/m

Assume in your solution:

- The beam is simply supported
- Fc`=28 Mpa and fy=420 Mpa
- Single layer of reinforcements
- Beam with 250 mm and effective depth 500 mm

Solution:
As =
$$n * \frac{\pi}{4} * D^2 = 4 * \frac{\pi}{4} * 20^2 = 1256.63 \text{ mm}^2$$

$$\rho = \frac{As}{bd} = \frac{1256.63}{250*500} = 0.01$$

$$\rho_{max} = 0.85 \beta_1 \frac{fc}{fy} \frac{\epsilon u}{\epsilon u + 0.004} = 0.85*0.85* \frac{28}{420} * \frac{0.003}{0.003 + 0.004} = 0.0206$$

$$\rho < \rho_{max} \text{ O.k}$$

Analysis of Singly Reinforced Rectangular Beam
$$As_{\text{minimum}} = \frac{1.4}{fy} b_{\text{w}} * d = \frac{1.4}{420} * 250 * 500 = 416.7 \text{ mm}^2$$

$$As > As_{minimum} o.k$$

As > As minimum 0.k

$$a = \frac{As*fy}{0.85fc*b} = \frac{1256.63*420}{0.85*28*250} = 88.7 \text{ mm}$$

$$c = \frac{a}{61} = \frac{88.7}{0.85} = 104.35 \text{ mm}$$

$$\in t = \frac{dt - c}{c} \in u = \frac{500 - 104.35}{104.35} * 0.003 = 0.0113 > 0.005$$

Then $\emptyset = 0.9$

$$\emptyset$$
Mn= \emptyset As*fy(d- $\frac{a}{2}$) = 0.9*1256.63 *420*(500- $\frac{88.7}{2}$)*10⁻⁶ = 216.43 kN.m

Calculate Mu

$$W_U$$
=1.2 W_D +1.6 W_L =1.2*15+1.6*20=50 kN/m

$$Mu = \frac{Wu * \ell^2}{8} = \frac{50 * 6^2}{8} = 225 \text{ kN.m}$$

 $\varphi Mn < Mu$ the section **is not O.K**

• beam dimensions must be increasing or using more reinforcement area.

Example: a rectangular beam with a width of 305 mm and an effective depth of 444 m. it is reinforced with 4φ29mm (assume A_{bar}=645 mm²) if fc`=27.5 Mpa and fy=414 Mpa. Check the beam adequacy and compute its design strength according to ACI requirements.

Solution:

As=
$$n \times A_{bar}$$
=4×645=2580 mm²

$$\rho = \frac{As}{bad} = \frac{2580}{305*444} = 0.019$$

$$\rho_{max} = 0.85\beta_1 \frac{fc'}{fy} = \frac{\epsilon u}{\epsilon u + 0.004} = 0.85 \times 0.85 \times \frac{27.5}{414} \times \frac{0.003}{0.003 + 0.004} = 0.0205$$

$$\rho < \rho_{max} \text{ O.k}$$
As $= \frac{1.4}{fy} b_w \times d = \frac{1.4}{414} \times 305 \times 444 = 458 \text{ mm}^2$
As > As $= \frac{As \times fy}{0.85fc' \times b} = \frac{2580 \times 414}{0.85 \times 27.5 \times 305} = 150 \text{ mm}$

$$c = \frac{a}{\beta 1} = \frac{150}{0.85} = 176 \text{ mm}$$

$$\epsilon t = \frac{dt - c}{c} \epsilon u = \frac{444 - 176}{176} \times 0.003 = 0.00457 < 0.005$$
Then:
$$\phi = 0.483 + 83.3 \times \epsilon t$$

$$\phi = 0.483 + 83.3 \times 0.00457$$

$$\phi = 0.86$$

$$\phi Mn = \phi \text{As} \times fy(d - \frac{a}{2}) = 0.86 \times 2580 \times 414 \times (444 - \frac{150}{2}) \times 10^{-6} = 339 \text{ kN.m}$$

Example: Check the adequacy of the beam shown below according to ACI requirement, fc = 28 Mpa, fy=420 Mpa

Solution:
As =
$$n \times \frac{\pi}{4} \times D^2 = 3 \times \frac{\pi}{4} \times 30^2 = 2120.57 \text{ mm}^2$$

d = $400 - 40 - 10 - 15 = 335 \text{ mm}$
 $\rho = \frac{As}{bd} = \frac{2120.57}{200*335} = 0.03165$

 $\rho > \rho_{max}$

The section is not O.K and may not be used according to ACI requirements ■